このカテゴリの記事
【数学ⅡB】センター試験(2018年)を解いてみた(7年連続)
【数学ⅡB】センター試験(2017年)を解いてみた(6年連続)
【数学ⅡB】センター試験(2015年)を解いてみた(5年連続)

お問い合わせ
お問い合わせ
プロフィール
谷藤友彦(やとうともひこ)

谷藤友彦

 東京都豊島区を拠点に、東京23区で活動する中小企業診断士(コンサルタント・トレーナー)。コンサルティングなどの仕事の実際の中身は守秘義務の関係で書くのが難しいため、書評が中心となっている点は何卒ご容赦あれ。

 専門領域は、(1)経営ビジョン・事業戦略の策定、(2)ビジョンや戦略とリンクした人材育成計画の立案・人事評価制度の構築、(3)人材育成計画に沿った教育研修プログラムの企画・開発。

 モットーは「日々改善、日々成長」、「実事求是」、「組織のためではなく知識のために働く」、「奇策は定石より先に立たず」、「一貫性(Consistency)」、「(無知の知ならぬ)無知の恥」

 好きなもの=Mr.Childrenサザンオールスターズoasis阪神タイガース水曜どうでしょう、数学(30歳を過ぎてから数学ⅢCをやり出した)。

 ブログタイトルに、oasisの往年の名曲『Whatever』を入れてみた。

◆旧ブログ◆
マネジメント・フロンティア
~終わりなき旅~


◆別館◆
こぼれ落ちたピース
所属組織など
◆個人事務所「シャイン経営研究所」◆ シャイン経営研究所ロゴ


(一社)東京都中小診断士協会一般社団法人東京都中小企業診断士協会
(城北支部執行委員、青年部長を務めています)

企業内診断士フォーラム(KSF)企業内診断士フォーラム
(独立診断士の立場から、企業内診断士の活動を応援しています)

アクセスカウンター(PV)
  • 今日:
  • 昨日:
  • 累計:

最新記事

Top > 数学ⅡB アーカイブ
2018年01月20日

【数学ⅡB】センター試験(2018年)を解いてみた(7年連続)


数学

 【2018年センター試験シリーズ】
 【世界史B】センター試験(2018年)オリジナル解説
 【日本史B】センター試験(2018年)オリジナル解説
 【化学】センター試験(2018年)オリジナル解説
 【数学ⅠA】センター試験(2018年)を解いてみた(7年連続)
 【数学ⅡB】センター試験(2018年)を解いてみた(7年連続)
 《過去の戦歴》
 センター試験数学ⅡB(2012年度分)を約12年ぶりに解いてみた(旧ブログ)
 【数学ⅡB】2013年センター試験を昨年に続いて解いてみた
 【数学ⅡB】2014年センター試験を3年連続で解いてみた
 【数学ⅡB】センター試験(2015年)を解いてみた(4年連続)
 【数学ⅡB】センター試験(2016年)を解いてみた(5年連続)
 【数学ⅡB】センター試験(2017年)を解いてみた(6年連続)

 問題、解答は「センター試験2018|解答速報2018|予備校の東進」を参照。数学ⅠAに続いて自力で解き、一応全問正解した。繰り返しになるが、おじさんだって頑張ればできるのだ。数学ⅠAとは違って邪道な解き方をしていないから、下図の解き方が適切な解き方だと思う。きちんとした解説を知りたい方は、予備校のHPでご確認ください。全体の難易度はそれほど高くないと感じたのだけれども、予備校のHPを見ると、平均点は数学ⅠAよりも約10点ほど低い50点台になっている。数学ⅡBは計算量が多いため、時間切れになってしまう受験生が多いと推測される。計算力を上げるには、やはりたくさんの問題を集中的に解くしか方法はない。なお、第5問は例によって統計の問題であるため、割愛した(何度も言うが、来年こそは解こう)。

 【第1問】三角関数、指数・対数関数(難易度:★☆☆)←難易度は私の主観。
 〔1〕は、最初に改めてラジアンの定義を尋ねられると、一体何だったかと一瞬迷ってしまった。(3)は三角関数の方程式の問題だが、問題文中で「加法定理を用いると」、「三角関数の合成を用いると」と丁寧に指示されているので、それに従えば解ける。x=θ+π/5、π/2≦θ≦πより、x-π/3の範囲に注意する。〔2〕は指数・対数関数に関する標準的な問題である。一般に、y=logaxにおいて、底の条件よりa>0かつa≠1、真数条件よりx>0、yの閾値は実数全体である。

 【第2問】微分・積分(難易度:★★☆)
 この問題に限らないが、図をできるだけ正確に描いて、設問で何が問われているのかを正確に把握することが重要である。〔1〕の(2)は、「1<v<v0の範囲でUは・・・」とあり、最後に「v>1におけるUの最小値は・・・」とあることから、最初から増減表を書いた方が解きやすい。〔2〕は、f(x)がx≧1の範囲で常にf(x)≦0を満たすことから、下図にあるように面積を求めるべき図形はx軸より下にあるため、マイナスのつけ忘れに注意。W=-F(t)+F(1)であるが、F'(t)=f(t)、またF(1)は定数であるからF'(1)=0であることに気づくと、W'=-f(t)であると解る。

 【第3問】数列(難易度:★★☆)
 (1)(2)は公差数列、公比数列の基本中の基本の問題であるから、絶対に落としてはならない。(1)(2)の結果は(3)で使用するため、(1)(2)を間違えると全滅する。(3)については、数列{cn}の定義がややこしいが、要するに、cnn(a1-b1)+(n-1)(a2-b2)+・・・+2(an-1-bn-1)+1(an-bn)を見ると、下線部はnから1まで順番に減っていき、カッコ内は1からnまで順番に増えていくということである。よって、cn+1は、下線部をn+1から1まで順番に減らしていき、カッコ内を1からn+1まで順番に増やしていけばよい。dnを求めた後は、階差数列を用いた一般項の求め方に従う。Σ2・3k+2については、Σ2・33・3k-1=Σ54・3k-1と変形すると、初項54、公比3の等比数列の和を求めるのと同じ式になる。

 【第4問】ベクトル(難易度:★★☆)
 第3問、第4問とも、問題文が長くて一瞬戸惑うが、問題文が長いということは、それだけヒントもたくさん隠されているということである。特に数学ⅡBの場合は、設問文の中で解き方を誘導している箇所があるため、問題文をよく読み込むことが大切である。個人的には、s=-a/(1-a)、t=-3(1-a)と答えさせるのがいやらしいと感じた(下線部が解答部分)。普通はs=a/(a-1)、t=3(a-1)と書きたくなるものである。ただ、0<a<1より、a-1<0となるから、マイナスの値にある値をかけるという形で答えさせるのを出題者が嫌ったのかもしれない。

センター試験(2018年)数学ⅡB①
センター試験(2018年)数学ⅡB②
センター試験(2018年)数学ⅡB③
センター試験(2018年)数学ⅡB④
センター試験(2018年)数学ⅡB⑤
センター試験(2018年)数学ⅡB⑥



2017年01月18日

【数学ⅡB】センター試験(2017年)を解いてみた(6年連続)


数学

 《過去の戦歴》
 センター試験数学ⅡB(2012年度分)を約12年ぶりに解いてみた(旧ブログ)
 【数学ⅡB】2013年センター試験を昨年に続いて解いてみた
 【数学ⅡB】2014年センター試験を3年連続で解いてみた
 【数学ⅡB】センター試験(2015年)を解いてみた(4年連続)
 【数学ⅡB】センター試験(2016年)を解いてみた(5年連続)

 <予備校による解説>
 東進ハイスクール センター試験2017年 数学ⅡB

 解くのにすごく時間がかかったけれど、数学ⅡBは一応満点を取ることができた。数学ⅠAのような力技に頼らず、王道の解き方をしたつもりである。やはり年齢を重ねると計算のスピードが落ちるようである。それから、細かい勘違いやミスが多い。センター試験の場合は、解答欄にぴったりあてはまる答えでないと、答えが間違っていると教えてくれるため、今回はそれに随分と助けられた。以下の難易度はあくまでも私の主観である。

 【第1問】《難易度:★☆☆》三角関数/指数・対数関数
 〔1〕は、cos2α+cos2βとcos2α・cos2βの値が求められれば、2次方程式の解と係数の関係より、cos2αとcos2βがx2-17/15x+4/15=0の2つの解であることが解る。〔2〕は、logxan=nlogxa、logxa+logxb=logxa・b、logxa-logxb=logxa/bと変形できることを利用する。

 【第2問】《難易度:★☆☆》微分・積分
 センター試験特有の計算の面倒臭さはあるが、問われている内容は至ってシンプルである。S=-2(a3-a2)ではなく、S=2(a2-a3)と答えさせるところが若干いやらしいと感じた。面積の最大値や値の変化を求める際には、aの値の範囲に注意して増減表を書く。

 【第3問】《難易度:★★☆》数列
 Unを求めるために、Un-4Unを計算させている。下図のように、Unに4をかけると、項が1つずつ右にずれるので、Un-4Un=2・42+43+44+・・・+4n+1-(n+1)・4n+2となる。ここで、43+44+・・・+4n+1を、(1+4+42+43+44+・・・+4n-1)-(1+4+42)+(4n+4n+1)と変形し、等比数列の和の公式を用いて計算をする。余談だが、4Unの最後の項を(n+1)・4n+2ではなく、ずっと(n+1)・4n+1と勘違いしたまま計算していたため、解答欄に合った答えが得られずに随分と時間を食ってしまった。加齢の証拠である。

 【第4問】《難易度:★★☆》ベクトル
 ここでも、(3)において、点Pから直線CEに引いた垂線と、点Cから直線EPに引いた垂線の交点Hのことを、最初は点Cから直線EPに引いた垂線と直線EPの交点と勘違いしてしまった。Hの座標を(p, q)とすると、ベクトルCHが得られる。ベクトルCHとベクトルEPが垂直に交わることから、ベクトルCH・ベクトルEP=0となり、a、p、qからなる式が得られる。また、Hは直線EP上の点であるから、ベクトルEH=rベクトルEPと表せる。よって、aとrからなる式が得られる。ところが、3つの変数(p、q、r)に対し式が2つだけなので、どうすればよいものかと途方に暮れてしまった。自分の勘違いにようやく気づくと、HはPからCE上に下ろした垂線上にあることから、Hのy座標はaだと解った。あとは、x座標をpとおけば、ベクトルCH・ベクトルEP=0よりpが得られる。

 (※【第5問】は確率の問題であり、私が高校生の時の学習範囲から外れるため省略した)
 
センター試験(2017年)数学ⅡB①
センター試験(2017年)数学ⅡB②
センター試験(2017年)数学ⅡB③
センター試験(2017年)数学ⅡB④



2016年01月19日

【数学ⅡB】センター試験(2015年)を解いてみた(5年連続)


 自分でもどういうわけかよく解らないのだが、2012年から毎年センター試験の数学だけを解くようになって早5年になった(過去のセンター試験については、カテゴリ「数学」を参照)。以下、今年の私の答案。あくまでも趣味的作業につき、内容の正確性は期待しないでください・・・(言い訳)。私よりもはるかにきれいに解説をまとめている方がいらっしゃるので、ご参考までに(「2016年センター試験 数学Ⅱ・数学Bの解説ページを作成しました|今日も8時間睡眠」)。私もいつまでも手書きで済ますのではなく、この方のようにPCで解答を作成できるようになりたい。

 《問題・解答(東進ハイスクールHPにジャンプします)》
 2016年センター試験 数学ⅡB 問題解答
 
 以下、主観的難易度(★☆☆:易~★★★:難)とコメント。
 【第1問(★☆☆)】指数・対数関数、三角関数
 〔1〕(3)で、t=log2x(x>0)の範囲を選択する際、「②t>0かつt≠1」というのに騙されそうになった。「0より大きく、かつ1以外」でなければならないのは、対数の真数条件である。〔2〕k=1/4の時、sin2x-4k=0とcos2x=0を満たすxの値が1つずつあると判断して、解の個数を2個とすると誤り。sin2x-4k=0もcos2x=0も、解はx=π/4であり、重解である。

 【第2問(★★☆)】積分
 2直線x=a、x=a+1と、C1:y=x2/2+1/2、C2:y=x2/4で囲まれた図形Dについて、4点(a, 0)、(a+1, 0)、(a+1, 1)、(a, 1)を頂点とする正方形Rの外側にある部分がどこなのか迷ってしまった。図を丁寧に描いてみることが大切だ。それから、(この問題に限らず、センター試験全般に言えるのだが、)計算が非常に面倒くさいため、慎重さを失ってはならない。

 【第3問(★★★)】数列
 数列は個人的に好きなので、難しいが楽しい。|1/2|1/3, 2/3|1/4, 2/4, 3/4|・・・というふうに区切ると、第m群がm個の項からなる群数列であることが解る。(2)a104は、第104項が第Mk項から第Nk項の間にあると考えて、不等式を解く。無理数の計算がやや面倒である。

 【第4問(★☆☆)】ベクトル
 センター試験のベクトルの問題は、ほとんど計算問題のようなものであり、図形的な発想はあまり要求されない。(1)|PQ|2はsとtの2次式で表されるが、(sの1次式)2+(tの1次式)2+kと変形すると最小値を求めることが可能となる。

 【第5問】統計(※省略)

センター試験数学ⅡB(2016年_1)
センター試験数学ⅡB(2016年_2)
センター試験数学ⅡB(2016年_3)
センター試験数学ⅡB(2016年_4)




  • ライブドアブログ
©2012-2017 free to write WHATEVER I like